新闻动态 | 联系我们 | 人才招聘 | 关注首页 | 加入收藏
  • 高考
  • 中考
当前位置:易达首页 >> 小升初 >> 数学

小升初

更多>>名师答疑

我要提问

联系我们

 

 

2013合肥小升初数学总复习资料(三)

分享到:
发布:网站管理员 发布时间:2013-8-10 浏览:2032
第二章度量衡

  一长度

  (一)什么是长度

  长度是一维空间的度量。

  (二)长度常用单位

  *公里(km)*米(m)*分米(dm)*厘米(cm)*毫米(mm)*微米(um)

  (三)单位之间的换算

  *1毫米=1000微米*1厘米=10毫米*1分米=10厘米*1米=1000毫米*1千米=1000米

  二面积

  (一)什么是面积

  面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。

  (二)常用的面积单位

  *平方毫米*平方厘米*平方分米*平方米*平方千米

  (三)面积单位的换算

  *1平方厘米=100平方毫米*1平方分米=100平方厘米*1平方米=100平方分米

  *1公倾=10000平方米*1平方公里=100公顷

  三体积和容积

  (一)什么是体积、容积

  体积,就是物体所占空间的大小。

  容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。

  (二)常用单位

  1体积单位

  *立方米*立方分米*立方厘米

  2容积单位*升*毫升

  (三)单位换算

  1体积单位

  *1立方米=1000立方分米

  *1立方分米=1000立方厘米

  2容积单位

  *1升=1000毫升

  *1升=1立方米

  *1毫升=1立方厘米

  四质量

  (一)什么是质量

  质量,就是表示表示物体有多重。

  (二)常用单位

  *吨t*千克kg*克g

  (三)常用换算

  *一吨=1000千克

  *1千克=1000克

  五时间

  (一)什么是时间

  是指有起点和终点的一段时间

  (二)常用单位

  世纪、年、月、日、时、分、秒

  (三)单位换算

  *1世纪=100年

  *1年=365天平年

  *一年=366天闰年

  *一、三、五、七、八、十、十二是大月大月有31天

  *四、六、九、十一是小月小月小月有30天

  *平年2月有28天闰年2月有29天

  *1天=24小时

  *1小时=60分

  *一分=60秒

  六货币

  (一)什么是货币

  货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。

  (二)常用单位

  *元*角*分

  (三)单位换算

  *1元=10角

*1角=10分

第三章代数初步知识

  一、用字母表示数

  1用字母表示数的意义和作用

  *用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。

  2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

  (1)常见的数量关系

  路程用s表示,速度v用表示,时间用t表示,三者之间的关系:

  s=vt

  v=s/t

  t=s/v

  总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

  a=bc

  b=a/c

  c=a/b

  (2)运算定律和性质

  加法交换律:a+b=b+a

  加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:ab=ba

  乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  减法的性质:a-(b+c)=a-b-c

  (3)用字母表示几何形体的公式

  长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。

  c=2(a+b)

  s=ab

  正方形的边长a用表示,周长用c表示,面积用s表示。

  c=4a

  s=a2

  平行四边形的底a用表示,高用h表示,面积用s表示。

  s=ah

  三角形的底用a表示,高用h表示,面积用s表示。

  s=ah/2

  梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。

  s=(a+b)h/2

  s=mh

  圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。

  c=∏d=2∏r

  s=∏r2

  扇形的半径用r表示,n表示圆心角的度数,面积用s表示。

  s=∏nr2/360

  长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。

  v=sh

  s=2(ab+ah+bh)

  v=abh

  正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示。

  s=6a2

  v=a3

  圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示。

  s侧=ch

  s表=s侧+2s底

  v=sh

  圆锥的高用h表示,底面积用s表示,体积用v表示。

  v=sh/3

  3用字母表示数的写法

  数字和字母、字母和字母相乘时,乘号可以记作“。”,或者省略不写,数字要写在字母的前面。

  当“1”与任何字母相乘时,“1”省略不写。

  在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。

  用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。

  4将数值代入式子求值

  *把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。

  *同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。

二、简易方程

  (一)方程和方程的解

  1方程:含有未知数的等式叫做方程。

  注意方程是等式,又含有未知数,两者缺一不可。

  方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

  2方程的解:使方程左右两边相等的未知数的值,叫做方程的解。

  三、解方程

  解方程,求方程的解的过程叫做解方程。

  四、列方程解应用题

  1列方程解应用题的意义

  *用方程式去解答应用题求得应用题的未知量的方法。

  2列方程解答应用题的步骤

  *弄清题意,确定未知数并用x表示;

  *找出题中的数量之间的相等关系;

  *列方程,解方程;

  *检查或验算,写出答案。

  3列方程解应用题的方法

  *综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

  *分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

  4列方程解应用题的范围

  小学范围内常用方程解的应用题:

  a一般应用题;

  b和倍、差倍问题;

  c几何形体的周长、面积、体积计算;

  d分数、百分数应用题;

  e比和比例应用题。

五比和比例

  1比的意义和性质

  (1)比的意义

  两个数相除又叫做两个数的比。

  “:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

  比值通常用分数表示,也可以用小数表示,有时也可能是整数。

  比的后项不能是零。

  根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

  (2)比的性质

  比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

  (3)求比值和化简比

  求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

  根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

  (4)比例尺

  图上距离:实际距离=比例尺

  要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

  线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

  (5)按比例分配

  在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

  方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

  2比例的意义和性质

  (1)比例的意义

  表示两个比相等的式子叫做比例。

  组成比例的四个数,叫做比例的项。

  两端的两项叫做外项,中间的两项叫做内项。

  (2)比例的性质

  在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。

  (3)解比例

  根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

  3正比例和反比例

  (1)成正比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

  用字母表示y/x=k(一定)

  (2)成反比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)

第四章几何的初步知识

  一线和角

  (1)线

  *直线

  直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

  *射线

  射线只有一个端点;长度无限。

  *线段

  线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

  *平行线

  在同一平面内,不相交的两条直线叫做平行线。

  两条平行线之间的垂线长度都相等。

  *垂线

  两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

  从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

  (2)角

  (1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。

  (2)角的分类

  锐角:小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。

  周角:角的一边旋转一周,与另一边重合。周角是360°。

二平面图形

  1长方形

  (1)特征

  对边相等,4个角都是直角的四边形。有两条对称轴。

  (2)计算公式

  c=2(a+b)

  s=ab

  2正方形

  (1)特征:

  四条边都相等,四个角都是直角的四边形。有4条对称轴。

  (2)计算公式

  c=4a

  s=a2

  3三角形

  (1)特征

  由三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条高。

  (2)计算公式

  s=ah/2

  (3)分类

  按角分

  锐角三角形:三个角都是锐角。

  直角三角形:有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。

  钝角三角形:有一个角是钝角。

  按边分

  不等边三角形:三条边长度不相等。

  等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

  等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

  4平行四边形

  (1)特征

  两组对边分别平行的四边形。

  相对的边平行且相等。对角相等,相邻的两个角的度数之和为180度。平行四边形容易变形。

  (2)计算公式

  s=ah

  5梯形

  (1)特征

  只有一组对边平行的四边形。

  中位线等于上下底和的一半。

  等腰梯形有一条对称轴。

  (2)公式

  s=(a+b)h/2=mh

  6圆

  (1)圆的认识

  平面上的一种曲线图形。

  圆中心的一点叫做圆心。一般用字母o表示。

  半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示。

  在同一个圆里,有无数条半径,每条半径的长度都相等。

  通过圆心并且两端都在圆上的线段叫做直径。一般用d表示。

  同一个圆里有无数条直径,所有的直径都相等。

  同一个圆里,直径等于两个半径的长度,即d=2r。

  圆的大小由半径决定。圆有无数条对称轴。

  (2)圆的画法

  把圆规的两脚分开,定好两脚间的距离(即半径);

  把有针尖的一只脚固定在一点(即圆心)上;

  把装有铅笔尖的一只脚旋转一周,就画出一个圆。

  (3)圆的周长

  围成圆的曲线的长叫做圆的周长。

  把圆的周长和直径的比值叫做圆周率。用字母∏表示。

  (4)圆的面积

  圆所占平面的大小叫做圆的面积。

  (5)计算公式

  d=2r

  r=d/2

  c=∏d

  c=2∏r

  s=∏r2

  7扇形

  (1)扇形的认识

  一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

  圆上AB两点之间的部分叫做弧,读作“弧AB”。

  顶点在圆心的角叫做圆心角。

  在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。

  扇形有一条对称轴。

  (2)计算公式

  s=n∏r2/360

  8环形

  (1)特征

  由两个半径不相等的同心圆相减而成,有无数条对称轴。

  (2)计算公式

  s=∏(R2-r2)

  9轴对称图形

  (1)特征

  如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

  正方形有4条对称轴,长方形有2条对称轴。

  等腰三角形有2条对称轴,等边三角形有3条对称轴。

  等腰梯形有一条对称轴,圆有无数条对称轴。

  菱形有4条对称轴,扇形有一条对称轴。

三立体图形

  (一)长方体

  1特征

  六个面都是长方形(有时有两个相对的面是正方形)。

  相对的面面积相等,12条棱相对的4条棱长度相等。

  有8个顶点。

  相交于一个顶点的三条棱的长度分别叫做长、宽、高。

  两个面相交的边叫做棱。

  三条棱相交的点叫做顶点。

  把长方体放在桌面上,最多只能看到三个面。

  长方体或者正方体6个面的总面积,叫做它的表面积。

  2计算公式

  s=2(ab+ah+bh)

  V=sh

  V=abh

  (二)正方体

  1特征

  六个面都是正方形

  六个面的面积相等

  12条棱,棱长都相等

  有8个顶点

  正方体可以看作特殊的长方体

  2计算公式

  S表=6a2

  v=a3(三)圆柱

  1圆柱的认识

  圆柱的上下两个面叫做底面。

  圆柱有一个曲面叫做侧面。

  圆柱两个底面之间的距离叫做高。

  进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

  2计算公式

  s侧=ch

  s表=s侧+s底×2

  v=sh/3

  (四)圆锥

  1圆锥的认识

  圆锥的底面是个圆,圆锥的侧面是个曲面。

  从圆锥的顶点到底面圆心的距离是圆锥的高。

  测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。

  把圆锥的侧面展开得到一个扇形。2计算公式

  v=sh/3

  (五)球

  1认识

  球的表面是一个曲面,这个曲面叫做球面。

  球和圆类似,也有一个球心,用O表示。

  从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。

  通过球心并且两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r。

  2计算公式

d=2r

第五章简单的统计

  一统计表

  (一)意义

  *把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。

  (二)组成部分

  *一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。

  (三)种类

  *单式统计表:只含有一个项目的统计表。

  *复式统计表:含有两个或两个以上统计项目的统计表。

  *百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。

  (四)制作步骤

  1搜集数据

  2整理数据:

  要根据制表的目的和统计的内容,对数据进行分类。

  3设计草表:

  要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。

  4正式制表:

  把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。

  二统计图

  (一)意义

  *用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。

  (二)分类

  1条形统计图

  用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来。

  优点:很容易看出各种数量的多少。

  注意:画条形统计图时,直条的宽窄必须相同。

  取一个单位长度表示数量的多少要根据具体情况而确定;

  复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

  制作条形统计图的一般步骤:

  (1)根据图纸的大小,画出两条互相垂直的射线。

  (2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。

  (3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

  (4)按照数据的大小画出长短不同的直条,并注明数量。

  2折线统计图

  用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。

  优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。

  注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。

  制作折线统计图的一般步骤:

  (1)根据图纸的大小,画出两条互相垂直的射线。

  (2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。

  (3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

  (4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。

  3扇形统计图

  用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。

  优点:很清楚地表示出各部分同总数之间的关系。

  制扇形统计图的一般步骤:

  (1)先算出各部分数量占总量的百分之几。

  (2)再算出表示各部分数量的扇形的圆心角度数。

  (3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。

  (4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。

小升初数学公式口诀一览

 

    数学公式口诀:和差化积公式

  和差化积公式

  和差化积需同名,

  变量置换要记清;

  假若函数不同名,

  互余角度换名称。

  简记为:

  S+S=2S·C

  S-S=2C·S

  C+C=2C·C

C-C=-2S·S

 

  数学公式口诀:三倍角正弦与余弦函数公式

  三倍角正弦与余弦函数公式

  三倍角正弦:3减43。

  三倍角余弦:43减3。

  系数后面很好记,

  都是单角的同名函数。

  公式:

  sin3θ=3sinθ-4sin3θ。

cos3θ=4cos3θ-3cosθ。

 

  数学公式口诀:通过正六边形记三角公式

  记忆三角公式,有一张图形会对我们有所帮助:

在这个六边形中,位于对角线两端的两项乘积均为1,即:tgα·ctgα=1,sinα·cscα=1,cosα·secα=1,共三个公式。画有格线的三角形中,肩上两角两项的平方和等于下面一项的平方,即sin2α+cos2α=1,ctg2α+1=csc2α,tg2α+1=sec2α,共三个公式。相邻三个顶点的外项乘积等于中间一项,即:sinα=cosα·tgα,cosα=sinα·ctgα,tgα=sinα·secα共六个公式。该图形中,正弦、正切、正割依次位于六边形右侧,而余弦、余切、余割位于左侧,易于记住。记住一个图形即可记起十几个公式,确是一种经济省力的记忆方法。

数学公式口诀:记忆诱导公式

  记忆诱导公式

  关于180°±α,360°±α,-α的诱导公式口诀为:

  函数名不变,

  符号看象限。

  关于90°±α,270°±α的诱导公式口诀为:

  函数名改变,

  符号看象限。

  说明,①不管α是什么样的角,都把它看作锐角来确定诱导公式中角所在的象限,从而确定它的符号。

  ②符号的确定,是由原来函数的角所在象限决定的。

  ③函数名改变,指正弦、余弦互变,正切、余切互变,正割、余割互变。

  三角函数诱导公式的共同特点

  奇变偶不变

符号看象限

 

数学公式口诀:三角函数值在象限内的符号

  郑玄吃鱼

  说明:郑玄是我国三国时的一位数学家。“郑玄吃鱼”可以帮助记忆六个三角函数在四个不同象限内的符号。“郑”,(Ⅰ)中皆为正(音同郑);“玄”,(Ⅱ)只有正弦(音近弦)和它的倒函数余割为正;“吃”,(Ⅲ)中只有正切(音近切)和它的倒函数余切为正;“鱼”,(Ⅳ)只有余(音同鱼)弦和它的倒函数正割为正。

  三角函数符号、互倒及奇偶性记忆法

  如果将三角函数按顺序编号,正弦函数为一,余弦函数为二,正切函数为三,余切函数为四,正割函数为五,余割函数为六,那么可以熟记下面的口诀:

  全正;一、六;

  三、四;二、五;

  二、五不变。

说明:在第一象限六个函数都为正,第二象限一、六为正(即正弦,余割函数为正,其余四个函数都为负);第三象限三、四为正(即正切,余切为正,其它为负);第四象限二、五为正(即余弦、正割为正,其余为负)。二、五不变,是说余弦,正割为偶函数〔cos(-x)=cosx,sec(-x)=secx〕,其余四个函数均为奇函数。并且一、六,三、四,二、五互为倒数关系(即sinα·cscα=1,tgα·ctgα=1,cosα·secα=1)。

 

  数学公式口诀:圆的辅助线之歌

  圆的辅助线之歌

  三圆和两圆,

  圆心紧相连;

  两圆紧为伴,

  必连公切线;

  两圆扣成环,

  必连公共弦。

说明:几何题目涉及两圆、三圆的问题,常常把它们的圆心连起来。两圆若外切和内切要作出它们的公切线;两圆若相交要作出其公共弦。

 

  数学公式口诀:平面几何辅助线一般添加法

  平面几何辅助线一般添加法

  角之关系要细辨,

  构造等、差、倍、半是关键。

  比例线段平行线,

  构造相似三角形也常见。

  比例线段中有和差,

  延截相等线段好办法。

  诸圆相交公共弦,

  有时得用连心线。

  诸圆相切公切线,

  切点圆心还需连。

  直角相对想共圆,

  互补二角共弦想共圆,

  四边形外角等于不相邻内对角想共圆。

  若遇中点找中点,

  两点相连平行线。

  角之平分线遇垂线,

  延长垂线得等边。

cnyouda.com的SEO综合查询 - 站长工具